Optimal detection of a hidden target: The median rule
Goran Peskir
Stochastic Processes and their Applications, 2012, vol. 122, issue 5, 2249-2263
Abstract:
We show that in the absence of any information about the ‘hidden’ target in terms of the observed sample path, and irrespectively of the distribution law of the observed process, the ‘median’ rule is optimal in both the space domain and the time domain. While the fact that the median rule minimises the spatial expectation can be seen as a direct extension of the well-known median characterisation dating back to Boscovich, the fact that this also holds for the temporal expectation seems to have stayed unnoticed until now. Building on this observation we derive new classes of median/quantile rules having a dynamic character.
Keywords: Optimal stopping; Hidden target; Rolling median/quantile rule; Lagrange multiplier (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912000269
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:122:y:2012:i:5:p:2249-2263
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.02.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().