Fine Gaussian fluctuations on the Poisson space II: Rescaled kernels, marked processes and geometric U-statistics
Raphaël Lachièze-Rey and
Giovanni Peccati
Stochastic Processes and their Applications, 2013, vol. 123, issue 12, 4186-4218
Abstract:
Continuing the analysis initiated by Lachièze-Rey and Peccati (2013), we use contraction operators to study the normal approximation of random variables having the form of a U-statistic written on the points in the support of a random Poisson measure. Applications are provided to subgraph counting, boolean models and coverage of random networks.
Keywords: Central limit theorems; Contractions; Malliavin calculus; Poisson space; Stein’s method; Stochastic geometry; U-statistics; Wasserstein distance; Wiener chaos (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491300166X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:12:p:4186-4218
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.06.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().