EconPapers    
Economics at your fingertips  
 

Degenerate parabolic stochastic partial differential equations

Martina Hofmanová

Stochastic Processes and their Applications, 2013, vol. 123, issue 12, 4294-4336

Abstract: We study the Cauchy problem for a scalar semilinear degenerate parabolic partial differential equation with stochastic forcing. In particular, we are concerned with the well-posedness in any space dimension. We adapt the notion of kinetic solution which is well suited for degenerate parabolic problems and supplies a good technical framework to prove the comparison principle. The proof of existence is based on the vanishing viscosity method: the solution is obtained by a compactness argument as the limit of solutions of nondegenerate approximations.

Keywords: Degenerate parabolic stochastic partial differential equation; Kinetic solution (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913001853
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:12:p:4294-4336

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2013.06.015

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:123:y:2013:i:12:p:4294-4336