Degenerate parabolic stochastic partial differential equations
Martina Hofmanová
Stochastic Processes and their Applications, 2013, vol. 123, issue 12, 4294-4336
Abstract:
We study the Cauchy problem for a scalar semilinear degenerate parabolic partial differential equation with stochastic forcing. In particular, we are concerned with the well-posedness in any space dimension. We adapt the notion of kinetic solution which is well suited for degenerate parabolic problems and supplies a good technical framework to prove the comparison principle. The proof of existence is based on the vanishing viscosity method: the solution is obtained by a compactness argument as the limit of solutions of nondegenerate approximations.
Keywords: Degenerate parabolic stochastic partial differential equation; Kinetic solution (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913001853
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:12:p:4294-4336
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.06.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().