Oscillation of harmonic functions for subordinate Brownian motion and its applications
Panki Kim and
Yunju Lee
Stochastic Processes and their Applications, 2013, vol. 123, issue 2, 422-445
Abstract:
In this paper, we establish an oscillation estimate of nonnegative harmonic functions for a pure-jump subordinate Brownian motion. The infinitesimal generator of such subordinate Brownian motion is an integro-differential operator. As an application, we give a probabilistic proof of the following form of relative Fatou theorem for such subordinate Brownian motion X in a bounded κ-fat open set; if u is a positive harmonic function with respect to X in a bounded κ-fat open set D and h is a positive harmonic function in D vanishing on Dc, then the non-tangential limit of u/h exists almost everywhere with respect to the Martin-representing measure of h.
Keywords: Oscillation of harmonic functions; Subordinate Brownian motion; Relative Fatou type theorem; Martin kernel; Martin boundary; Harmonic function; Martin representation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002165
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:2:p:422-445
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.09.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().