Martingale expansion in mixed normal limit
Nakahiro Yoshida
Stochastic Processes and their Applications, 2013, vol. 123, issue 3, 887-933
Abstract:
The quasi-likelihood estimator and the Bayesian type estimator of the volatility parameter are in general asymptotically mixed normal. In case the limit is normal, the asymptotic expansion was derived by Yoshida [28] as an application of the martingale expansion. The expansion for the asymptotically mixed normal distribution is then indispensable to develop the higher-order approximation and inference for the volatility. The classical approaches in limit theorems, where the limit is a process with independent increments or a simple mixture, do not work. We present asymptotic expansion of a martingale with asymptotically mixed normal distribution. The expansion formula is expressed by the adjoint of a random symbol with coefficients described by the Malliavin calculus, differently from the standard invariance principle. Applications to a quadratic form of a diffusion process (“realized volatility”) are discussed.
Keywords: Asymptotic expansion; Martingale; Mixed normal distribution; Malliavin calculus; Random symbol; Double Itô integral; Quadratic form (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002347
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:3:p:887-933
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.10.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().