Long-time behavior of stable-like processes
Nikola Sandrić
Stochastic Processes and their Applications, 2013, vol. 123, issue 4, 1276-1300
Abstract:
In this paper, we consider a long-time behavior of stable-like processes. A stable-like process is a Feller process given by the symbol p(x,ξ)=−iβ(x)ξ+γ(x)|ξ|α(x), where α(x)∈(0,2), β(x)∈R and γ(x)∈(0,∞). More precisely, we give sufficient conditions for recurrence, transience and ergodicity of stable-like processes in terms of the stability function α(x), the drift function β(x) and the scaling function γ(x). Further, as a special case of these results we give a new proof for the recurrence and transience property of one-dimensional symmetric stable Lévy processes with the index of stability α≠1.
Keywords: Ergodicity; Foster–Lyapunov criteria; Harris recurrence; Recurrence; Stable-like process; Transience (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002657
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:4:p:1276-1300
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.12.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().