EconPapers    
Economics at your fingertips  
 

Quenched central limit theorems for random walks in random scenery

Nadine Guillotin-Plantard and Julien Poisat

Stochastic Processes and their Applications, 2013, vol. 123, issue 4, 1348-1367

Abstract: Random walks in random scenery are processes defined by Zn:=∑k=1nωSk where S:=(Sk,k≥0) is a random walk evolving in Zd and ω:=(ωx,x∈Zd) is a sequence of i.i.d. real random variables. Under suitable assumptions on the random walk S and the random scenery ω, almost surely with respect to ω, the correctly renormalized sequence (Zn)n≥1 is proved to converge in distribution to a centered Gaussian law with explicit variance.

Keywords: Random walk in random scenery; Limit theorem; Local time (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002505
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:4:p:1348-1367

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2012.11.010

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:123:y:2013:i:4:p:1348-1367