Quenched central limit theorems for random walks in random scenery
Nadine Guillotin-Plantard and
Julien Poisat
Stochastic Processes and their Applications, 2013, vol. 123, issue 4, 1348-1367
Abstract:
Random walks in random scenery are processes defined by Zn:=∑k=1nωSk where S:=(Sk,k≥0) is a random walk evolving in Zd and ω:=(ωx,x∈Zd) is a sequence of i.i.d. real random variables. Under suitable assumptions on the random walk S and the random scenery ω, almost surely with respect to ω, the correctly renormalized sequence (Zn)n≥1 is proved to converge in distribution to a centered Gaussian law with explicit variance.
Keywords: Random walk in random scenery; Limit theorem; Local time (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414912002505
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:4:p:1348-1367
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2012.11.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().