Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series
Victor M. Panaretos and
Shahin Tavakoli
Stochastic Processes and their Applications, 2013, vol. 123, issue 7, 2779-2807
Abstract:
We develop a doubly spectral representation of a stationary functional time series, and study the properties of its empirical version. The representation decomposes the time series into an integral of uncorrelated frequency components (Cramér representation), each of which is in turn expanded in a Karhunen–Loève series. The construction is based on the spectral density operator, the functional analogue of the spectral density matrix, whose eigenvalues and eigenfunctions at different frequencies provide the building blocks of the representation. By truncating the representation at a finite level, we obtain a harmonic principal component analysis of the time series, an optimal finite dimensional reduction of the time series that captures both the temporal dynamics of the process, as well as the within-curve dynamics. Empirical versions of the decompositions are introduced, and a rigorous analysis of their large-sample behaviour is provided, that does not require any prior structural assumptions such as linearity or Gaussianity of the functional time series, but rather hinges on Brillinger-type mixing conditions involving cumulants.
Keywords: Spectral representation; Spectral density operator; Functional data analysis; Functional principal components; Discrete Fourier transform; Cumulants; Mixing (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913000793
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:7:p:2779-2807
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.03.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().