Quasi likelihood analysis of volatility and nondegeneracy of statistical random field
Masayuki Uchida and
Nakahiro Yoshida
Stochastic Processes and their Applications, 2013, vol. 123, issue 7, 2851-2876
Abstract:
We construct a quasi likelihood analysis for diffusions under the high-frequency sampling over a finite time interval. For this, we prove a polynomial type large deviation inequality for the quasi likelihood random field. Then it becomes crucial to prove nondegeneracy of a key index χ0. By nature of the sampling setting, χ0 is random. This makes it difficult to apply a naïve sufficient condition, and requires a new machinery. In order to establish a quasi likelihood analysis, we need quantitative estimate of the nondegeneracy of χ0. The existence of a nondegenerate local section of a certain tensor bundle associated with the statistical random field solves this problem.
Keywords: Asymptotic mixed normality; Bayes type estimator; Convergence of moments; Discrete time observation; Maximum likelihood type estimator; Polynomial type large deviation inequality (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913001038
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:123:y:2013:i:7:p:2851-2876
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.04.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().