EconPapers    
Economics at your fingertips  
 

Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes

Vytautė Pilipauskaitė and Donatas Surgailis

Stochastic Processes and their Applications, 2014, vol. 124, issue 2, 1011-1035

Abstract: We discuss joint temporal and contemporaneous aggregation of N independent copies of AR(1) process with random-coefficient a∈[0,1) when N and time scale n increase at different rate. Assuming that a has a density, regularly varying at a=1 with exponent −1<β<1, different joint limits of normalized aggregated partial sums are shown to exist when N1/(1+β)/n tends to (i) ∞, (ii) 0, (iii) 0<μ<∞. The limit process arising under (iii) admits a Poisson integral representation on (0,∞)×C(R) and enjoys ‘intermediate’ properties between fractional Brownian motion limit in (i) and sub-Gaussian limit in (ii).

Keywords: Aggregation; Random-coefficient AR(1) process; Long memory; Intermediate scaling; Asymptotic self-similarity; Poisson stochastic integral (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913002573
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:2:p:1011-1035

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2013.10.004

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:124:y:2014:i:2:p:1011-1035