Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes
Vytautė Pilipauskaitė and
Donatas Surgailis
Stochastic Processes and their Applications, 2014, vol. 124, issue 2, 1011-1035
Abstract:
We discuss joint temporal and contemporaneous aggregation of N independent copies of AR(1) process with random-coefficient a∈[0,1) when N and time scale n increase at different rate. Assuming that a has a density, regularly varying at a=1 with exponent −1<β<1, different joint limits of normalized aggregated partial sums are shown to exist when N1/(1+β)/n tends to (i) ∞, (ii) 0, (iii) 0<μ<∞. The limit process arising under (iii) admits a Poisson integral representation on (0,∞)×C(R) and enjoys ‘intermediate’ properties between fractional Brownian motion limit in (i) and sub-Gaussian limit in (ii).
Keywords: Aggregation; Random-coefficient AR(1) process; Long memory; Intermediate scaling; Asymptotic self-similarity; Poisson stochastic integral (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414913002573
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:124:y:2014:i:2:p:1011-1035
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2013.10.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().