Fourier transform methods for pathwise covariance estimation in the presence of jumps
Christa Cuchiero and
Josef Teichmann
Stochastic Processes and their Applications, 2015, vol. 125, issue 1, 116-160
Abstract:
We provide a new non-parametric Fourier procedure to estimate the trajectory of the instantaneous covariance process (from discrete observations of a multidimensional price process) in the presence of jumps extending the seminal work of Malliavin and Mancino (2002, 2009). Our approach relies on a modification of (classical) jump-robust estimators of integrated realized covariance to estimate the Fourier coefficients of the covariance trajectory. Using Fourier–Féjer inversion we reconstruct the path of the instantaneous covariance. We prove consistency and a central limit theorem (CLT) and in particular that the asymptotic estimator variance is smaller by a factor 2/3 in comparison to classical local estimators.
Keywords: Non-parametric spot variance estimation; Fourier analysis; Jump–diffusion; Jump-robust estimation techniques (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914001823
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:1:p:116-160
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.07.023
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().