Rate of convergence in the law of large numbers for supercritical general multi-type branching processes
Alexander Iksanov and
Matthias Meiners
Stochastic Processes and their Applications, 2015, vol. 125, issue 2, 708-738
Abstract:
We provide sufficient conditions for polynomial rate of convergence in the weak law of large numbers for supercritical general indecomposable multi-type branching processes. The main result is derived by investigating the embedded single-type process composed of all individuals having the same type as the ancestor. As an important intermediate step, we determine the (exact) polynomial rate of convergence of Nerman’s martingale in continuous time to its limit. The techniques used also allow us to give streamlined proofs of the weak and strong laws of large numbers and ratio convergence for the processes in focus.
Keywords: Markov renewal theory; Supercritical general multi-type branching process (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914002440
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:2:p:708-738
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.10.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().