EconPapers    
Economics at your fingertips  
 

Rate of convergence in the law of large numbers for supercritical general multi-type branching processes

Alexander Iksanov and Matthias Meiners

Stochastic Processes and their Applications, 2015, vol. 125, issue 2, 708-738

Abstract: We provide sufficient conditions for polynomial rate of convergence in the weak law of large numbers for supercritical general indecomposable multi-type branching processes. The main result is derived by investigating the embedded single-type process composed of all individuals having the same type as the ancestor. As an important intermediate step, we determine the (exact) polynomial rate of convergence of Nerman’s martingale in continuous time to its limit. The techniques used also allow us to give streamlined proofs of the weak and strong laws of large numbers and ratio convergence for the processes in focus.

Keywords: Markov renewal theory; Supercritical general multi-type branching process (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914002440
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:2:p:708-738

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2014.10.004

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:125:y:2015:i:2:p:708-738