High-frequency asymptotics for path-dependent functionals of Itô semimartingales
Moritz Duembgen and
Mark Podolskij
Stochastic Processes and their Applications, 2015, vol. 125, issue 4, 1195-1217
Abstract:
The estimation of local characteristics of Itô semimartingales has received a great deal of attention in both academia and industry over the past decades. In various papers limit theorems were derived for functionals of increments and ranges in the infill asymptotics setting. In this paper we establish the asymptotic theory for a wide class of statistics that are built from the incremental process of an Itô semimartingale. More specifically, we will show the law of large numbers and the associated stable central limit theorem for the path dependent functionals in the continuous setting, and discuss the asymptotic theory for range-based statistics in the discontinuous framework. Some examples from economics and physics demonstrate the potential applicability of our theoretical results in practice.
Keywords: High frequency data; Limit theory; Semimartingales; Stable convergence (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914002026
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:4:p:1195-1217
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.08.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().