One-point reflection
Zhen-Qing Chen and
Masatoshi Fukushima
Stochastic Processes and their Applications, 2015, vol. 125, issue 4, 1368-1393
Abstract:
We examine symmetric extensions of symmetric Markov processes with one boundary point. Relationship among various normalizations of local times, entrance laws and excursion laws is studied. Dirichlet form characterization of elastic one-point reflection of symmetric Markov processes is derived. We give a direct construction of Walsh’s Brownian motion as a one-point reflection together with its Dirichlet form characterization. This yields directly the analytic characterization of harmonic and subharmonic functions for Walsh’s Brownian motion, recently obtained by Fitzsimmons and Kuter (2014) using a different method. We further study as a one-point reflection two-dimensional Brownian motion with darning (BMD).
Keywords: Boundary theory; One-point reflection; Excursion law; Local time; Dirichlet form; Brownian motion with darning; Conformal invariance; Harmonic functions (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414914002683
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:4:p:1368-1393
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2014.11.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().