Heat kernel estimates for Δ+Δα/2 under gradient perturbation
Zhen-Qing Chen and
Eryan Hu
Stochastic Processes and their Applications, 2015, vol. 125, issue 7, 2603-2642
Abstract:
For α∈(0,2) and M>0, we consider a family of nonlocal operators {Δ+aαΔα/2,a∈(0,M]} on Rd under Kato class gradient perturbation. We establish the existence and uniqueness of their fundamental solutions, and derive their sharp two-sided estimates. The estimates give explicit dependence on a and recover the sharp estimates for Brownian motion with drift as a→0. Each fundamental solution determines a conservative Feller process X. We characterize X as the unique solution of the corresponding martingale problem as well as a Lévy process with singular drift.
Keywords: Heat kernel; Transition density; Feller semigroup; Perturbation; Positivity; Lévy system; Kato class (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915000666
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:125:y:2015:i:7:p:2603-2642
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2015.02.016
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().