EconPapers    
Economics at your fingertips  
 

An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint

Pierre Henry-Labordère, Xiaolu Tan and Nizar Touzi

Stochastic Processes and their Applications, 2016, vol. 126, issue 9, 2800-2834

Abstract: We provide an extension of the martingale version of the Fréchet–Hoeffding coupling to the infinitely-many marginals constraints setting. In the two-marginal context, this extension was obtained by Beiglböck and Juillet (2016), and further developed by Henry-Labordère and Touzi (in press), see also Beiglböck and Henry-Labordère (Preprint).

Keywords: Martingale optimal transport, Brenier’s Theorem; PCOC; Fake Brownian motion (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916000491
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:9:p:2800-2834

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.03.003

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:126:y:2016:i:9:p:2800-2834