Weak Dirichlet processes with jumps
Elena Bandini and
Francesco Russo
Stochastic Processes and their Applications, 2017, vol. 127, issue 12, 4139-4189
Abstract:
This paper develops systematically the stochastic calculus via regularization in the case of jump processes. In particular one continues the analysis of real-valued càdlàg weak Dirichlet processes with respect to a given filtration. Such a process is the sum of a local martingale and an adapted process A such that [N,A]=0, for any continuous local martingale N. Given a function u:[0,T]×R→R, which is of class C0,1 (or sometimes less), we provide a chain rule type expansion for u(t,Xt) which stands in applications for a chain Itô type rule.
Keywords: Weak Dirichlet processes; Calculus via regularizations; Random measure; Stochastic integrals for jump processes; Orthogonality (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301035
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:12:p:4139-4189
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.04.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().