Monotone martingale transport plans and Skorokhod embedding
Mathias Beiglböck,
Pierre Henry-Labordère and
Nizar Touzi
Stochastic Processes and their Applications, 2017, vol. 127, issue 9, 3005-3013
Abstract:
We show that the left-monotone martingale coupling is optimal for any given performance function satisfying the martingale version of the Spence–Mirrlees condition, without assuming additional structural conditions on the marginals. We also give a new interpretation of the left monotone coupling in terms of Skorokhod embedding which allows us to give a short proof of uniqueness.
Keywords: Optimal transport; Martingales; Skorokhod embedding (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917300078
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:9:p:3005-3013
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.01.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().