Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation
Ying Hu,
Yiqing Lin and
Abdoulaye Soumana Hima
Stochastic Processes and their Applications, 2018, vol. 128, issue 11, 3724-3750
Abstract:
In this paper, we consider backward stochastic differential equations driven by G-Brownian motion (GBSDEs) under quadratic assumptions on coefficients. We prove the existence and uniqueness of solution for such equations. On the one hand, a priori estimates are obtained by applying the Girsanov type theorem in the G-framework, from which we deduce the uniqueness. On the other hand, to prove the existence of solutions, we first construct solutions for discrete GBSDEs by solving corresponding fully nonlinear PDEs, and then approximate solutions for general quadratic GBSDEs in Banach spaces.
Keywords: Backward stochastic differential equations; Quadratic growth; G-Brownian motion; Discretization; Fully nonlinear PDEs (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917303101
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:11:p:3724-3750
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.12.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().