On the refracted–reflected spectrally negative Lévy processes
José-Luis Pérez and
Kazutoshi Yamazaki
Stochastic Processes and their Applications, 2018, vol. 128, issue 1, 306-331
Abstract:
We study a combination of the refracted and reflected Lévy processes. Given a spectrally negative Lévy process and two boundaries, it is reflected at the lower boundary while, whenever it is above the upper boundary, a linear drift at a constant rate is subtracted from the increments of the process. Using the scale functions, we compute the resolvent measure, the Laplace transform of the occupation times as well as other fluctuation identities that will be useful in applied probability including insurance, queues, and inventory management.
Keywords: Lévy processes; Fluctuation theory; Scale functions; Insurance risk (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491530079X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:1:p:306-331
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.03.024
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().