The strong predictable representation property in initially enlarged filtrations under the density hypothesis
Claudio Fontana
Stochastic Processes and their Applications, 2018, vol. 128, issue 3, 1007-1033
Abstract:
We study the strong predictable representation property in filtrations initially enlarged with a random variable L. We prove that the strong predictable representation property can always be transferred to the enlarged filtration as long as the classical density hypothesis of Jacod (1985) holds. This generalizes the existing martingale representation results and does not rely on the equivalence between the conditional and the unconditional laws of L. Depending on the behavior of the density process at zero, different forms of martingale representation are established. The results are illustrated in the context of hedging contingent claims under insider information.
Keywords: Initial enlargement of filtration; Density hypothesis; Martingale representation property; Hedging; Insider information (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414915300752
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:3:p:1007-1033
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.06.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().