Almost sure convergence of the largest and smallest eigenvalues of high-dimensional sample correlation matrices
Johannes Heiny and
Thomas Mikosch
Stochastic Processes and their Applications, 2018, vol. 128, issue 8, 2779-2815
Abstract:
In this paper, we show that the largest and smallest eigenvalues of a sample correlation matrix stemming from n independent observations of a p-dimensional time series with iid components converge almost surely to (1+γ)2 and (1−γ)2, respectively, as n→∞, if p∕n→γ∈(0,1] and the truncated variance of the entry distribution is “almost slowly varying”, a condition we describe via moment properties of self-normalized sums. Moreover, the empirical spectral distributions of these sample correlation matrices converge weakly, with probability 1, to the Marčenko–Pastur law, which extends a result in Bai and Zhou (2008). We compare the behavior of the eigenvalues of the sample covariance and sample correlation matrices and argue that the latter seems more robust, in particular in the case of infinite fourth moment. We briefly address some practical issues for the estimation of extreme eigenvalues in a simulation study.
Keywords: Sample correlation matrix; Infinite fourth moment; Largest eigenvalue; Smallest eigenvalue; Spectral distribution; Sample covariance matrix; Self-normalization; Regular variation; Combinatorics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302533
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:8:p:2779-2815
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.10.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().