Extremes of q-Ornstein–Uhlenbeck processes
Yizao Wang
Stochastic Processes and their Applications, 2018, vol. 128, issue 9, 2979-3005
Abstract:
Two limit theorems are established on the extremes of a family of stationary Markov processes, known as q-Ornstein–Uhlenbeck processes with q∈(−1,1). Both results are crucially based on the weak convergence of the tangent process at the lower boundary of the domain of the process, a positive self-similar Markov process little investigated so far in the literature. The first result is the asymptotic excursion probability established by the double-sum method, with an explicit formula for the Pickands constant in this context. The second result is a Brown–Resnick-type limit theorem on the minimum process of i.i.d. copies of the q-Ornstein–Uhlenbeck process: with appropriate scalings in both time and magnitude, a new semi-min-stable process arises in the limit.
Keywords: Markov process; Self-similar process; Tangent process; Excursion probability; Double-sum method; Brown–Resnick process; Semi-min-stable process; q-Ornstein–Uhlenbeck process (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302685
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:9:p:2979-3005
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.10.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().