Volterra-type Ornstein–Uhlenbeck processes in space and time
Viet Son Pham and
Carsten Chong
Stochastic Processes and their Applications, 2018, vol. 128, issue 9, 3082-3117
Abstract:
We propose a novel class of temporo-spatial Ornstein–Uhlenbeck processes as solutions to Lévy-driven Volterra equations with additive noise and multiplicative drift. After formulating conditions for the existence and uniqueness of solutions, we derive an explicit solution formula and discuss distributional properties such as stationarity, second-order structure and short versus long memory. Furthermore, we analyze in detail the path properties of the solution process. In particular, we introduce different notions of càdlàg paths in space and time and establish conditions for the existence of versions with these regularity properties. The theoretical results are accompanied by illustrative examples.
Keywords: Ambit process; Càdlàg in space and time; Lévy basis; Long memory; Path properties; Second-order structure; Space–time modeling; Stationary solution; Stochastic Volterra equation; Volterra-type Ornstein–Uhlenbeck process (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302727
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:9:p:3082-3117
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.10.012
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().