The tamed unadjusted Langevin algorithm
Nicolas Brosse,
Alain Durmus,
Éric Moulines and
Sotirios Sabanis
Stochastic Processes and their Applications, 2019, vol. 129, issue 10, 3638-3663
Abstract:
In this article, we consider the problem of sampling from a probability measure π having a density on Rd proportional to x↦e−U(x). The Euler discretization of the Langevin stochastic differential equation (SDE) is known to be unstable, when the potential U is superlinear. Based on previous works on the taming of superlinear drift coefficients for SDEs, we introduce the Tamed Unadjusted Langevin Algorithm (TULA) and obtain non-asymptotic bounds in V-total variation norm and Wasserstein distance of order 2 between the iterates of TULA and π, as well as weak error bounds. Numerical experiments are presented which support our findings.
Keywords: Tamed unadjusted Langevin algorithm; Markov chain Monte Carlo; Total variation distance; Wasserstein distance (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918305635
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:10:p:3638-3663
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.10.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().