EconPapers    
Economics at your fingertips  
 

Spectral tail processes and max-stable approximations of multivariate regularly varying time series

Anja Janßen

Stochastic Processes and their Applications, 2019, vol. 129, issue 6, 1993-2009

Abstract: A regularly varying time series as introduced in Basrak and Segers (2009) is a (multivariate) time series such that all finite dimensional distributions are multivariate regularly varying. The extremal behavior of such a process can then be described by the index of regular variation and the so-called spectral tail process, which is the limiting distribution of the rescaled process, given an extreme event at time 0. As shown in Basrak and Segers (2009), the stationarity of the underlying time series implies a certain structure of the spectral tail process, informally known as the “time change formula”. In this article, we show that on the other hand, every process which satisfies this property is in fact the spectral tail process of an underlying stationary max-stable process. The spectral tail process and the corresponding max-stable process then provide two complementary views on the extremal behavior of a multivariate regularly varying stationary time series.

Keywords: Max-stable processes; Regularly varying time series; Spectral tail process; Stationary processes (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303016
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:6:p:1993-2009

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.06.010

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:129:y:2019:i:6:p:1993-2009