On optimal stopping of multidimensional diffusions
Sören Christensen,
Fabián Crocce,
Ernesto Mordecki and
Paavo Salminen
Stochastic Processes and their Applications, 2019, vol. 129, issue 7, 2561-2581
Abstract:
This paper develops an approach for solving perpetual discounted optimal stopping problems for multidimensional diffusions, with special emphasis on the d-dimensional Wiener process. We first obtain some verification theorems for diffusions, based on the Green kernel representation of the value function. Specializing to the multidimensional Wiener process, we apply the Martin boundary theory to obtain a set of tractable integral equations involving only harmonic functions that characterize the stopping region of the problem in the bounded case. The approach is illustrated through the optimal stopping problem of a d-dimensional Wiener process with a positive definite quadratic form reward function.
Keywords: Optimal stopping; Multidimensional diffusions; Martin kernel; Green kernel; Helgason support theorem; Quadratic reward (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918303612
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:129:y:2019:i:7:p:2561-2581
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.07.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().