Stochastic functional differential equations with infinite delay under non-Lipschitz coefficients: Existence and uniqueness, Markov property, ergodicity, and asymptotic log-Harnack inequality
Ya Wang,
Fuke Wu,
George Yin and
Chao Zhu
Stochastic Processes and their Applications, 2022, vol. 149, issue C, 1-38
Abstract:
This paper focuses on a class of stochastic functional differential equations with infinite delay and non-Lipschitz coefficients. Under one-sided super-linear growth and non-Lipschitz conditions, this paper establishes the existence and uniqueness of strong solutions and strong Markov properties of the segment processes. Under additional assumption on non-degeneracy of the diffusion coefficient, exponential ergodicity for the segment process is derived by using asymptotic coupling method. In addition, the asymptotic log-Harnack inequality is established for the associated Markovian semigroup by using coupling and change of measures, which implies the asymptotically strong Feller property. Finally, an example is given to demonstrate these results.
Keywords: Stochastic functional differential equation; Infinite delay; Non-Lipschitz coefficient; Ergodicity; Asymptotic log-Harnack inequality; Asymptotic strong Feller property (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414922000643
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:149:y:2022:i:c:p:1-38
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2022.03.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().