Approximation for the invariant measure with applications for jump processes (convergence in total variation distance)
Vlad Bally and
Yifeng Qin
Stochastic Processes and their Applications, 2024, vol. 176, issue C
Abstract:
In this paper, we establish an abstract framework for the approximation of the invariant probability measure for a Markov semigroup. Following Pagès and Panloup (2022) we use an Euler scheme with decreasing step (unadjusted Langevin algorithm). Under some contraction property with exponential rate and some regularization properties, we give an estimate of the error in total variation distance. This abstract framework covers the main results in Pagès and Panloup (2022) and Chen et al. (2023). As a specific application we study the convergence in total variation distance to the invariant measure for jump type equations. The main technical difficulty consists in proving the regularization properties — this is done under an ellipticity condition, using Malliavin calculus for jump processes.
Keywords: Invariant measure; Unadjusted Langevin algorithm; Euler scheme with decreasing steps; Total variation distance; Malliavin calculus; Regularization lemma; Jump process (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414924001224
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:176:y:2024:i:c:s0304414924001224
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2024.104416
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().