A diffusion defined on a fractal state space
William B. Krebs
Stochastic Processes and their Applications, 1991, vol. 37, issue 2, 199-212
Abstract:
In the plane, we define a fractal known as the Vicsek snowflake in terms of a family of affine contractions in 2. We show that the Vicsek snowflake is a nested fractal in the sense of Lindstrøm (1990). We define random walks on the Vicsek snowflake and explicitly find an invariant probability for random walk. From this invariant probability, we construct a Brownian motion on the Vicsek snowflake. We show that this Brownian motion is the unique diffusion limit under weak convergence of rescaled random walks with any probability parameter. We show that Brownian motion on the Vicsek snowflake has a scaling property reminiscent of Brownian motion in 1. Using a coupling argument, we show that our Brownian motion has transition densities with respect to Hausdorff measure on the snowflake.
Keywords: diffusions; fractals (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(91)90043-C
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:37:y:1991:i:2:p:199-212
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().