Subexponentiality of the product of independent random variables
D. B. H. Cline and
G. Samorodnitsky
Stochastic Processes and their Applications, 1994, vol. 49, issue 1, 75-98
Abstract:
Suppose X and Y are independent nonnegative random variables. We study the behavior of P(XY>t), as t --> [infinity], when X has a subexponential distribution. Particular attention is given to obtaining sufficient conditions on P(Y>t) for XY to have a subexponential distribution. The relationship between P(X>t) and P(XY>t) is further studied for the special cases where the former satisfies one of the extensions of regular variation.
Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (61)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0304-4149(94)90113-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:49:y:1994:i:1:p:75-98
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().