EconPapers    
Economics at your fingertips  
 

Global adapted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging

Michael Kohlmann and Shanjian Tang

Stochastic Processes and their Applications, 2002, vol. 97, issue 2, 255-288

Abstract: Backward stochastic Riccati equations are motivated by the solution of general linear quadratic optimal stochastic control problems with random coefficients, and the solution has been open in the general case. One distinguishing difficult feature is that the drift contains a quadratic term of the second unknown variable. In this paper, we obtain the global existence and uniqueness result for a general one-dimensional backward stochastic Riccati equation. This solves the one-dimensional case of Bismut-Peng's problem which was initially proposed by Bismut (Lecture Notes in Math. 649 (1978) 180). We use an approximation technique by constructing a sequence of monotone drifts and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean-variance hedging problem with general random market conditions.

Keywords: Backward; stochastic; Riccati; equation; Linear-quadratic; optimal; stochastic; control; problem; Regular; approximation; Mean-variance; hedging; Feynman-Kac; formula (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00133-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:97:y:2002:i:2:p:255-288

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:97:y:2002:i:2:p:255-288