On descents after maximal values in samples of discrete random variables
Yu. Yakubovich
Statistics & Probability Letters, 2015, vol. 105, issue C, 203-208
Abstract:
We show that the expected value of the descent after the first maximum in a sample of i.i.d. discrete random variables, as the sample size grows, behaves asymptotically up to vanishing terms as the expectation of the maximal value minus the expectation of a sampled random variable, provided the latter is finite. We also show that the expected value after the last maximum exhibits the same behaviour, although it is in general slightly bigger in mean.
Keywords: Asymptotic approximation; Maximum; Descent (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715215002060
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:105:y:2015:i:c:p:203-208
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2015.06.020
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().