Functional regression with repeated eigenvalues
Matthew Reimherr
Statistics & Probability Letters, 2015, vol. 107, issue C, 62-70
Abstract:
We explore the functional principal component method for estimating regression parameters in functional linear models. We demonstrate that the commonly made assumption concerning unique eigenvalues is unnecessary. Convergence rates are established allowing a variety of sample spaces and dependence structures.
Keywords: Functional data analysis; Linear regression; Operator inequalities; Repeated eigenvalues (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715215002783
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:107:y:2015:i:c:p:62-70
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2015.07.037
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().