EconPapers    
Economics at your fingertips  
 

Estimation of linear composite quantile regression using EM algorithm

Yuzhu Tian, Qianqian Zhu and Maozai Tian

Statistics & Probability Letters, 2016, vol. 117, issue C, 183-191

Abstract: By incorporating the Expectation–maximization (EM) algorithm into composite asymmetric Laplace distribution (CALD), an iterative weighted least square estimator for the linear composite quantile regression (CQR) models is derived. Two selection methods for the number of composite quantiles via redefined AIC and BIC are developed. Finally, the proposed procedures are illustrated by some simulations.

Keywords: CALD; Composite quantile regression; EM algorithm; AIC (Akaike’s information criterion); BIC (Bayesian information criterion) (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216300700
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:117:y:2016:i:c:p:183-191

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2016.05.019

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:117:y:2016:i:c:p:183-191