EconPapers    
Economics at your fingertips  
 

An asymptotically optimal kernel combined classifier

Majid Mojirsheibani and Jiajie Kong

Statistics & Probability Letters, 2016, vol. 119, issue C, 91-100

Abstract: A kernel ensemble classifier is developed for accurate classification based on several initial classifiers. A data-driven choice of the smoothing parameter of the kernel is considered and the resulting classifier is shown to be asymptotically optimal. Therefore, the proposed combined classifier asymptotically outperforms each individual classifier.

Keywords: Kernel; Hamming distance; Smoothing parameter; Combined classifier (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715216301304
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:119:y:2016:i:c:p:91-100

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2016.07.017

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:119:y:2016:i:c:p:91-100