Conducting highly principled data science: A statistician’s job and joy
Xiao-Li Meng
Statistics & Probability Letters, 2018, vol. 136, issue C, 51-57
Abstract:
Highly Principled Data Science insists on methodologies that are: (1) scientifically justified; (2) statistically principled; and (3) computationally efficient. An astrostatistics collaboration, together with some reminiscences, illustrates the increased roles statisticians can and should play to ensure this trio, and to advance the science of data along the way.
Keywords: Astrostatistics; Computational efficiency; Principled corner cutting; Scientific justification (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218300981
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:136:y:2018:i:c:p:51-57
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.02.053
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().