Optimal weighting schemes for longitudinal and functional data
Xiaoke Zhang and
Jane-Ling Wang
Statistics & Probability Letters, 2018, vol. 138, issue C, 165-170
Abstract:
We propose optimal weighting schemes for both mean and covariance estimations for functional data based on local linear smoothing such that the L2 rate of convergence is minimized. These schemes can self-adjust to the sampling plan and lead to practical improvements.
Keywords: Local linear smoothers; Non-dense functional data; Dense functional data; Ultra-dense functional data; Mixture weighting schemes (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218301214
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:138:y:2018:i:c:p:165-170
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.03.007
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().