Local binary regression with spherical predictors
Marco Di Marzio,
Stefania Fensore,
Agnese Panzera and
Charles C. Taylor
Statistics & Probability Letters, 2019, vol. 144, issue C, 30-36
Abstract:
We discuss local regression estimators when the predictor lies on the d-dimensional sphere and the response is binary. Despite Di Marzio et al. (2018b), who introduce spherical kernel density classification, we build on the theory of local polynomial regression and local likelihood. Simulations and a real-data application illustrate the effectiveness of the proposals.
Keywords: Local likelihood; Spherical kernels; Tangent-normal decomposition (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715218302633
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:144:y:2019:i:c:p:30-36
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2018.07.019
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().