A note on improving on a vector of coordinate-wise estimators of non-negative means via shrinkage
Yuan-Tsung Chang,
Takeru Matsuda and
William E. Strawderman
Statistics & Probability Letters, 2019, vol. 153, issue C, 143-150
Abstract:
We study improved shrinkage estimation of a vector of non-negative means. We concentrate on the Gaussian case with known scale, but do not necessarily assume the initial estimator is minimax. As a result, we find improved shrinkage estimators in fewer than 3 dimension in certain cases. Generalized Bayes estimators which may be improved via shrinkage in 1 and 2 dimensions illustrate the result. We also consider improved positive part estimators.
Keywords: Generalized Bayes estimator; Stein estimator; Katz estimator; Pseudo-Bayes estimator (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715219301634
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:153:y:2019:i:c:p:143-150
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2019.06.005
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().