Semiparametric estimation for cure survival model with left-truncated and right-censored data and covariate measurement error
Li-Pang Chen
Statistics & Probability Letters, 2019, vol. 154, issue C, -
Abstract:
In this paper, we mainly discuss the cure model with survival data. Different from the usual survival data with right-censoring, we incorporate the features of left-truncation and measurement error in covariates. Generally speaking, left-truncation causes a biased sample in survival analysis; measurement error in covariates may incur a tremendous bias if we do not deal with it properly. To deal with these challenges, we propose a flexible way to analyze left-truncated survival data and correct measurement error in covariates. The theoretical results are also established in this paper.
Keywords: Cure; Left-truncation; Measurement error; Prevalent cohort; Survival analysis; Transformation model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715219301841
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:154:y:2019:i:c:15
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2019.06.023
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().