On nonparametric inference for spatial regression models under domain expanding and infill asymptotics
Daisuke Kurisu
Statistics & Probability Letters, 2019, vol. 154, issue C, -
Abstract:
In this paper, we develop nonparametric inference on spatial regression models as an extension of Lu and Tjøstheim (2014), which develops nonparametric inference on density functions of stationary spatial processes under domain expanding and infill (DEI) asymptotics. In particular, we derive multivariate central limit theorems of mean and variance functions of nonparametric spatial regression models. Built upon those results, we propose a method to construct confidence bands for mean and variance functions.
Keywords: Spatial regression model; Nonparametric inference; DEI asymptotics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715219301804
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:154:y:2019:i:c:16
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2019.06.019
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().