EconPapers    
Economics at your fingertips  
 

Revisiting integral functionals of geometric Brownian motion

Elena Boguslavskaya and Lioudmila Vostrikova

Statistics & Probability Letters, 2020, vol. 165, issue C

Abstract: In this paper we revisit the integral functional of geometric Brownian motion It=∫0te−(μs+σWs)ds, where μ∈R, σ>0 and (Ws)s>0 is a standard Brownian motion.

Keywords: Exponential integral functional; Laplace transform; Geometric Brownian motion (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715220301371
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301371

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2020.108834

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301371