EconPapers    
Economics at your fingertips  
 

On non-linear dependence of multivariate subordinated Lévy processes

E. Di Nardo, Marina Marena and P. Semeraro

Statistics & Probability Letters, 2020, vol. 166, issue C

Abstract: Multivariate subordinated Lévy processes are widely employed in finance for modeling multivariate asset returns. We propose to exploit non-linear dependence among financial assets through multivariate cumulants of these processes, for which we provide a closed form formula by using the multi-index generalized Bell polynomials. Using multivariate cumulants, we perform a sensitivity analysis, to investigate non-linear dependence as a function of the model parameters driving the dependence structure.

Keywords: Lévy process; subordination; Cumulant; Normal inverse Gaussian (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715220301735
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301735

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2020.108870

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301735