Quantization coefficients for uniform distributions on the boundaries of regular polygons
Joel Hansen,
Itzamar Marquez,
Mrinal K. Roychowdhury and
Eduardo Torres
Statistics & Probability Letters, 2021, vol. 173, issue C
Abstract:
In this paper, we give a general formula to determine the quantization coefficients for uniform distributions defined on the boundaries of different regular m-sided polygons inscribed in a circle. The result shows that the quantization coefficient for the uniform distribution on the boundary of a regular m-sided polygon inscribed in a circle is an increasing function of m, and approaches to the quantization coefficient for the uniform distribution on the circle as m tends to infinity.
Keywords: Uniform distribution; Optimal sets; Quantization error; Quantization coefficient; Regular polygon (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715221000225
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:173:y:2021:i:c:s0167715221000225
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2021.109060
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().