On a prior based on the Wasserstein information matrix
W. Li and
F.J. Rubio
Statistics & Probability Letters, 2022, vol. 190, issue C
Abstract:
We introduce a prior for the parameters of univariate continuous distributions, based on the Wasserstein information matrix, which is invariant under reparameterisations. We discuss the links between the proposed prior with information geometry. We present sufficient conditions for the propriety of the posterior distribution for general classes of models. We present a simulation study that shows that the induced posteriors have good frequentist properties.
Keywords: Fisher information matrix; Jeffreys prior; Wasserstein-2 distance; Wasserstein information matrix; Wasserstein prior (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715222001705
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:190:y:2022:i:c:s0167715222001705
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2022.109645
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().