Minimax rate for optimal transport regression between distributions
Laya Ghodrati and
Victor M. Panaretos
Statistics & Probability Letters, 2023, vol. 194, issue C
Abstract:
Distribution-on-distribution regression considers the problem of formulating and estimating a regression relationship where both covariate and response are probability distributions. The optimal transport distributional regression model postulates that the conditional Fréchet mean of the response distribution is linked to the covariate distribution via an optimal transport map. We establish the minimax rate of estimation of such a regression function, by deriving a lower bound that matches the convergence rate attained by the Fréchet least squares estimator.
Keywords: Functional regression; Random measure; Optimal transport; Wasserstein metric (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715222002711
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:194:y:2023:i:c:s0167715222002711
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2022.109758
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().