Adaptive rank-based tests for high dimensional mean problems
Yu Zhang and
Long Feng
Statistics & Probability Letters, 2024, vol. 214, issue C
Abstract:
The Wilcoxon signed-rank test and the Wilcoxon–Mann–Whitney test are commonly employed in one sample and two sample mean tests for one-dimensional hypothesis problems. For high-dimensional mean test problems, we calculate the asymptotic distribution of the maximum of rank statistics for each variable and suggest a max-type test. This max-type test is then merged with a sum-type test, based on their asymptotic independence offered by stationary and strong mixing assumptions. Our numerical studies reveal that this combined test demonstrates robustness and superiority over other methods, especially for heavy-tailed distributions.
Keywords: Asymptotic independence; High dimensional test; Rank-based test (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715224001950
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:214:y:2024:i:c:s0167715224001950
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2024.110226
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().