An adaptive optimal estimate of the tail index for MA(l) time series
J. L. Geluk and
Liang Peng
Statistics & Probability Letters, 2000, vol. 46, issue 3, 217-227
Abstract:
For samples of random variables with a regularly varying tail estimating the tail index has received much attention recently. For the proof of asymptotic normality of the tail index estimator second-order regular variation is needed. In this paper we first supplement earlier results on convolution given by Geluk et al. (Stochastic Process. Appl. 69 (1997) 138-159). Secondly, we propose a simple estimator of the tail index for finite moving average time series. We also give a subsampling procedure in order to estimate the optimal sample fraction in the sense of minimal mean squared error.
Keywords: Regular; variation; Tail; index (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00099-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:46:y:2000:i:3:p:217-227
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().