Convergence rates for partially splined models
John Rice
Statistics & Probability Letters, 1986, vol. 4, issue 4, 203-208
Abstract:
A partial spline model is a semi-parametric regression model. In this paper we analyze the convergence rates of estimates of the parametric and nonparametric components of the model under a particular assumption on the design. We show that the estimate of the parametric component of the model is generally biased and that this bias can be larger than the standard error. To force the bias to be neglible with respect to the standard error, it is necessary to undersmooth the nonparametric component.
Date: 1986
References: Add references at CitEc
Citations: View citations in EconPapers (52)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(86)90067-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:4:y:1986:i:4:p:203-208
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().